Entropy-Based Incomplete Cholesky Decomposition for a Scalable Spectral Clustering Algorithm: Computational Studies and Sensitivity Analysis

نویسندگان

  • Rocco Langone
  • Marc Van Barel
  • Johan A. K. Suykens
چکیده

Rocco Langone 1,*, Marc Van Barel 2 and Johan A. K. Suykens 1 1 ESAT-STADIUS, Katholieke Universiteit Leuven, Kasteelpark Arenberg 10, B-3001 Leuven, Belgium; [email protected] 2 Department of Computer Science, Katholieke Universiteit Leuven, Celestijnenlaan 200A, B-3001 Leuven, Belgium; [email protected] * Correspondence: [email protected]; Tel.: +32-16-32-63-17; Fax: +32-16-3-21970

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse spectral clustering method based on the incomplete Cholesky decomposition

A new sparse spectral clustering method using linear algebra techniques is proposed. This method exploits the structure of the Laplacian to construct its approximation, not in terms of a low rank approximation but in terms of capturing the structure of the matrix. The approximation is based on the incomplete Cholesky decomposition with an adapted stopping criterion, it selects a sparse data set...

متن کامل

kernlab – An S4 Package for Kernel Methods in R

kernlab is an extensible package for kernel-based machine learning methods in R. It takes advantage of R’s new S4 object model and provides a framework for creating and using kernelbased algorithms. The package contains dot product primitives (kernels), implementations of support vector machines and the relevance vector machine, Gaussian processes, a ranking algorithm, kernel PCA, kernel CCA, k...

متن کامل

New global optimization algorithms for model-based clustering

The Expectation-Maximization (EM) algorithm is a very popular optimization tool in model-based clustering problems. However, while the algorithm is convenient to implement and numerically very stable, it only produces solutions that are locally optimal. Thus, EM may not achieve the globally optimal solution to clustering problems, which can have a large number of local optima. This paper introd...

متن کامل

Kernel Spectral Clustering and applications

In this chapter we review the main literature related to kernel spectral clustering (KSC), an approach to clustering cast within a kernel-based optimization setting. KSC represents a least-squares support vector machine based formulation of spectral clustering described by a weighted kernel PCA objective. Just as in the classifier case, the binary clustering model is expressed by a hyperplane i...

متن کامل

A Fuzzy C-means Algorithm for Clustering Fuzzy Data and Its Application in Clustering Incomplete Data

The fuzzy c-means clustering algorithm is a useful tool for clustering; but it is convenient only for crisp complete data. In this article, an enhancement of the algorithm is proposed which is suitable for clustering trapezoidal fuzzy data. A linear ranking function is used to define a distance for trapezoidal fuzzy data. Then, as an application, a method based on the proposed algorithm is pres...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Entropy

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2016